Lecture 9

Part 1: Effect of image motion on image quality Part 2: Detectors and signal to noise ratio Part 3: Class projects

Claire Max Astro 289, UC Santa Cruz February 9, 2016

Part One: Image motion and its effects on Strehl ratio

- Sources of image motion:
 - Telescope shake due to wind buffeting (hard to model *a priori* depends on telescope, dome, ...)
 - Atmospheric turbulence
- Image motion due to turbulence:
 - Sensitive to atm. inhomogenities > telescope diam. D
 - Hence reduced if "outer scale" of turbulence is $\leq D$

Long exposures, no AO correction

$$FWHM(\lambda) = 0.98 \frac{\lambda}{r_0}$$

- "Seeing limited": Units are radians
- Seeing disk gets slightly smaller at longer wavelengths: FWHM ~ λ / $\lambda^{-6/5}$ ~ $\lambda^{-1/5}$
- For completely uncompensated images, wavefront error

$$\sigma^2_{uncomp} = 1.02 (D / r_0)^{5/3}$$

Correcting tip-tilt has relatively large effect, for seeing-limited images

For completely uncompensated images

 $\sigma^2_{uncomp} = 1.02 (D / r_0)^{5/3}$

• If image motion (tip-tilt) has been completely removed $\sigma^{2}_{tiltcomp} = 0.134 (D / r_{0})^{5/3}$ (Tyson, Principles of AO, eqns 2.61 and 2.62)

 Removing image motion can (in principle) improve the wavefront variance of an uncompensated image by a factor of 10

 Origin of statement that "Tip-tilt is the single largest contributor to wavefront error"

But you have to be careful if you want to apply this statement to AO correction

• If tip-tilt has been completely removed

$$\sigma_{tiltcomp}^2 = 0.134 (D / r_0)^{5/3}$$

• But typical values of (D / r_{o}) are 10 - 50 in the near-IR - Keck, D=10 m, r_{o} = 60 cm at λ =2 μ m, (D/r_{o}) = 17

 $\sigma^2_{tiltcomp} = 0.134 (17)^{5/3} \sim 15$

so wavefront phase variance is >> 1

 Conclusion: if (D/r₀) >> 1, removing tilt alone won't give you anywhere near a diffraction limited image
 Page 5

Scaling of image motion due to turbulence (review)

• Mean squared deflection angle due to image motion: independent of λ and ~ $D^{-1/3}$

$$\sigma_{\alpha}^{2} = 0.182 \left(\frac{D}{r_{0}}\right)^{5/3} \left(\frac{\lambda}{D}\right)^{2} \quad radians^{2}$$

 But relative to Airy disk (diffraction limit), image motion gets <u>worse</u> for larger D and smaller wavelengths:

$$\frac{\sigma_{\alpha}}{(\lambda / D)} = 0.43 \left(\frac{D}{r_0}\right)^{5/6} \propto \frac{D^{5/6}}{\lambda}$$

Typical values of image motion

• Keck Telescope: D = 10 m, $r_0 = 0.2$ m, $\lambda = 2$ microns

$$\sigma_{\alpha} = 0.43 \left(\frac{D}{r_0}\right)^{5/6} \left(\frac{\lambda}{D}\right) = 0.43 \left(\frac{10m}{0.2m}\right)^{5/6} \left(\frac{2 \times 10^{-6}m}{10m}\right) = 0.45 \text{ arc sec}$$
$$\frac{\lambda}{D} = 0.04 \text{ arc sec} \qquad (\text{Recall that 1 arcsec} = 5 \ \mu rad)$$

• So in theory at least, rms image motion is > 10 times larger than diffraction limit, for these numbers.

What maximum tilt must the tip-tilt mirror be able to correct?

- For a Gaussian distribution, probability is 99.4% that the value will be within ± 2.5 standard deviations of the mean.
- For this condition, the <u>peak</u> excursion of the angle of arrival is

$$\alpha_{peak} = \pm 1.07 \left(\frac{D}{r_0}\right)^{5/6} \left(\frac{\lambda}{D}\right) \text{ radians } \approx 2 \text{ arc sec}$$
2.5 σ

• Note that peak angle is independent of wavelength

Use Gaussians to model the effects of image motion on image quality

• Model the diffraction limited core as a Gaussian:

$$G(x) = \frac{1}{(2\pi)^{1/2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

• A Gaussian profile with standard deviation $\sigma_A = 0.44 \left(\frac{\lambda}{D}\right)$ has same width as an Airy function

Tilt errors spread out the core

- Effect of random tilt error σ_{α} is to spread each point of image into a Gaussian profile with standard deviation σ_{α}
- If initial profile has width σ_A then the profile with tilt has width $\sigma_T = (\sigma_{\alpha}^2 + \sigma_A^2)^{1/2}$ (see next slide)

Image motion reduces peak intensity

• Conserve flux:

- Integral under a circular Gaussian profile with peak amplitude A_0 is equal to $2\pi A_0 \sigma_A^2$
- Image motion keeps total energy the same, but puts it in a new Gaussian with variance $\sigma_T^2 = \sigma_A^2 + \sigma_\alpha^2$
- Peak intensity is reduced by the ratio

$$F_T = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_\alpha^2} = \frac{1}{1 + (\sigma_\alpha / \sigma_A)^2}$$

Tilt effects on point spread function, continued

• Since $\sigma_A = 0.44 \lambda / D$, peak intensity of the previously diffraction-limited core is reduced by

$$F_T = \frac{1}{1 + (D/0.44\lambda)^2 \sigma_\alpha^2}$$

- Diameter of core is increased by $F_T^{-1/2}$
- Similar calculations for the halo: replace D by r₀
- Since D >> r₀ for cases of interest, effect on halo is modest but effect on core can be large

Typical values for Keck Telescope, if tip-tilt is <u>not</u> corrected

• Core is strongly affected at a wavelength of 1 micron:

 $\sigma_{\alpha} \cong 0.5 \text{ arcsec}, \lambda / D = 0.02 \text{ arcsec}, F_T = \frac{1}{1 + (\sigma_{\alpha} / \sigma_A)^2} \approx 0.002$

- Core diameter is increased by factor of $F_T^{-1/2} \sim 23$

- Halo is much less affected than core:
 - Halo peak intensity is only reduced by factor of 0.93
 - Halo diameter is only increased by factor of 1.04

Effect of tip-tilt on Strehl ratio

• Define S_c as the peak intensity ratio of the core alone:

$$S_c = \frac{\exp(-\sigma_{\phi}^2)}{1 + (D/0.44\lambda)^2 \sigma_{\alpha}^2}$$

• Image motion relative to Airy disk size 1.22 λ / D :

$$\frac{\sigma_{\alpha}}{(1.22\lambda/D)} = 0.36 \left[\frac{\exp(-\sigma_{\phi}^2)}{S_c} - 1\right]^{-1/2}$$

• Example: To obtain Strehl of 0.8 from tip-tilt only (no phase error at all, so $\sigma_{\omega} = 0$), $\sigma_{\alpha} = 0.18 (1.22 \ \lambda / D)$

- Residual tilt has to be w/in 18% of Airy disk diameter

Effects of turbulence depend on size of telescope

- Coherence length of turbulence: *r*₀ (Fried's parameter)
- For telescope diameter D < (2 3) x r₀:
 Dominant effect is "image wander"
- As D becomes >> r₀:
 Many small "speckles" develop
- Computer simulations by Nick Kaiser: image of a star, $r_0 = 40$ cm

Effect of atmosphere on long and short exposure images of a star

Vertical axis is image size in units of λ/r_o

Summary, Image Motion Effects (1)

- Image motion
 - Broadens core of AO PSF
 - Contributes to Strehl degradation differently than highorder aberrations
 - Effect on Strehl ratio can be quite large: crucial to correct tip-tilt

Summary, Image Motion Effects (2)

- Image motion can be large, <u>if</u> not compensated
 - Keck, λ = 1 micron, σ_{α} = 0.5 arc sec
- Enters computation of overall Strehl ratio differently than higher order wavefront errors
- Lowers peak intensity of core by $F_c^{-1} \sim 1 / 0.002 = 500 x$
- Halo is much less affected:
 - Peak intensity decreased by 0.93
 - Halo diameter increased by 1.04

How to correct for image motion

• Natural guide star AO:

- From wavefront sensor information, filter out all higher order modes, left with overall tip-tilt
- Correct this tip-tilt with a "tip-tilt mirror"
- Laser guide star AO:
 - Can use laser to correct for high-order aberrations but not for image motion (laser goes both up and down thru atmosphere, hence moves relative to stars)
 - So LGS AO needs to have a so-called "tip-tilt star" within roughly an arc min of target.
 - Can be faint: down to 18-19th magnitude will work Page 19

Implications of image motion for AO system design

- Impact of image motion will be different, depending on the science you want to do
- Example 1: Search for planets around nearby stars
 - You can use the star itself for tip-tilt info
 - Little negative impact of image motion smearing
- Example 2: Studies of high-redshift galaxies
 - Sufficiently bright tip-tilt stars will be rare
 - Trade-off between fraction of sky where you can get adequate tip-tilt correction, and the amount of tolerable image-motion blurring

 \rightarrow High sky coverage \rightarrow fainter tip-tilt stars farther away

Part 2: Detectors and signal to noise ratio

- Detector technology
 - Basic detector concepts
 - Modern detectors: CCDs and IR arrays
- Signal-to-Noise Ratio (SNR)
 - Introduction to noise sources
 - Expressions for signal-to-noise
 - » Terminology is not standardized
 - » Two Keys: 1) Write out what you' re measuring.2) Be careful about units!
 - » Work directly in photo-electrons where possible

References for detectors and signal to noise ratio

 Excerpt from "Electronic imaging in astronomy", Ian. S. McLean (1997 Wiley/Praxis)

 Excerpt from "Astronomy Methods", Hale Bradt (Cambridge University Press)

• Both are in Reader

Early detectors: photographic plates, photomultipliers

- Photographic plates
 - very low Quantum Efficiency: QE ~ 1 - 4%
 - non-linear response
 - very large areas, very small "pixels" (grains of silver compounds)
 - hard to digitize
- Photomultiplier tubes
 - low QE (10%)
 - no noise: each photon produces cascade
 - linear at low signal rates
 - easily coupled to digital outputs

Modern detectors are based on semiconductors

- In semiconductors and insulators, electrons are confined to a number of specific bands of energy
- "Band gap" = energy difference between top of valence band and bottom of the conduction band
- For an electron to jump from a valence band to a conduction band, need a minimum amount of energy
- This energy can be provided by a photon, or by thermal energy, or by a cosmic ray
- Vacancies or holes left in valence band allow it to contribute to electrical conductivity as well
- Once in conduction band, electron can move freely

Bandgap energies for commonly used detectors

• If the forbidden energy gap is E_G there is a cut-off wavelength beyond which the photon energy (hc/ λ) is too small to cause an electron to jump from the valence band to the conduction band

Material	Symbol	E_{gap}	λ_{cutoff}
Silicon	Si	1.12 eV	1.1 μ m
Indium antimonide	InSb	0.23 eV @ 77K	5.4 μ m
Mercury cadmium telluride	Hg _x Cd₁₋ _x Te	0.5 eV (x=0.55)	2.5 μ m

Credit: Ian McLean Page 25

CCD transfers charge from one pixel to the next in order to make a 2D image

 By applying "clock voltage" to pixels in sequence, can move charge to an amplifier and then off the chip

Page 26

CFAN

Schematic of CCD and its read-out electronics

 "Read-out noise" injected at the on-chip electron-tovoltage conversion (an on-chip amplifier)

CCD readout process: charge transfer

- Adjusting voltages on electrodes connects wells and allow charge to move
- Charge shuffles up columns of the CCD and then is read out along the top
- Charge on output amplifier (capacitor)
 produces voltage

Video animation: https://www.youtube.com/watch?v=PoXinWleWns

Modern detectors: photons \rightarrow electrons \rightarrow voltage \rightarrow digital numbers

- With what efficiency do photons produce electrons?
- With what efficiency are electrons (voltages) measured?
- Digitization: how are electrons (analog) converted into digital numbers?
- Overall: What is the conversion between photons hitting the detector and digital numbers read into your computer?

Primary properties of detectors

- Quantum Efficiency QE: Probability of detecting a single photon incident on the detector
- Spectral range (QE as a function of wavelength)
- "Dark Current": Detector signal in the <u>absence</u> of light
- "Read noise": Random variations in output signal when you read out a detector
- Gain g: Conversion factor between internal voltages and computer "Data Numbers" DNs or "Analog-to-Digital Units" ADUs

Secondary detector characteristics

- Pixel size (e.g. in microns)
- Total detector size (e.g. 1024 x 1024 pixels)
- Readout rate (in either frames per sec or pixels per sec)
- Well depth (the maximum number of photons or photoelectrons that a pixel can record without "saturating" or going nonlinear)
- Cosmetic quality: Uniformity of response across pixels, dead pixels
- Stability: does the pixel response vary with time?

CCDs are the most common detector for wavefront sensors

- Can be read out fast (e.g., every few milliseconds so as to keep up with atmospheric turbulence)
- Relatively low read-noise (a few to 10 electrons)
- Only need modest size (e.g., largest today is only 256x256 pixels)

CCD phase space

CCDs dominate inside and outside astronomy
 Even used for x-rays

- Large formats available (4096x4096) or mosaics of smaller devices. Gigapixel focal planes are possible.
- High quantum efficiency 80%+
- <u>Dark current</u> from thermal processes
 - Long-exposure astronomy CCDs are cooled to reduce dark current
- <u>Readout noise</u> can be several electrons per pixel each time a CCD is read out

» Trade high readout speed vs added noise

What do CCDs look like?

Carnegie 4096x4096 CCD Slow readout (science)

Subaru SuprimeCam Mosaic Slow readout (science)

E2V 80 x 80 fast readout for wavefront sensing

Infrared detectors

- Read out pixels individually, by bonding a multiplexed readout array to the back of the photosensitive material
- Photosensitive material must have lower band-gap than silicon, in order to respond to lower-energy IR photons
- Materials: InSb, HgCdTe, ...

Types of noise in instruments

- Every instrument has its own characteristic background noise
 - Example: cosmic ray particles passing thru a CCD knock electrons into the conduction band
- Some residual instrument noise is statistical in nature; can be measured very well given enough integration time
- Some residual instrument noise is systematic in nature: cannot easily be eliminated by better measurement
 - Example: difference in optical path to wavefront sensor and to science camera
 - Typically has to be removed via calibration

Statistical fluctuations = "noise"

Definition of variance:

$$\sigma^2 \equiv \frac{1}{n} \sum_{i=1}^n (x_i - m)^2$$

where m is the mean, n is the number of independent measurements of x, and the x_i are the individual measured values

• If x and y are two random independent variables, the variance of the sum (or difference) is the sum of the variances: $\sigma_{tot}^2 = \sigma_x^2 + \sigma_y^2$

Main sources of detector noise for wavefront sensors in common use

- Poisson noise or photon statistics
 - Noise due to statistics of the detected photons themselves
- Read-noise
 - Electronic noise (from amplifiers) each time CCD is read out
- Other noise sources (less important for wavefront sensors, but important for other imaging applications)
 - Sky background
 - Dark current

Photon statistics: Poisson distribution

- CCDs are sensitive enough that they care about individual photons
- Light is quantum in nature. There is a natural variability in how many photons will arrive in a specific time interval *T*, even when the <u>average</u> flux *F* (photons/sec) is fixed.
- We can't assume that in a given pixel, for two consecutive observations of length *T*, the same number of photons will be counted.
- The probability distribution for *N* photons to be counted in an observation time *T* is

$$P(N|F,T) = \frac{(FT)^{N} e^{-FT}}{N!}$$

Properties of Poisson distribution

- Average value = FT
- Standard deviation = (FT)^{1/2}
- Approaches a Gaussian distribution as N becomes large

Horizontal axis: FT

Credit: Bruce Macintosh

Properties of Poisson distribution

Horizontal axis: FT

Credit: Bruce Macintosh

Properties of Poisson distribution

- When < FT > is large, Poisson distribution approaches Gaussian
- Standard deviations of independent Poisson and Gaussian processes can be added in quadrature

Horizontal axis: FT

Credit: Bruce Macintosh

How to convert between incident photons and recorded digital numbers?

- Digital numbers outputted from a CCD are called Data Numbers (DN) or Analog-Digital Units (ADUs)
- Have to turn DN or ADUs back into microvolts → electrons → photons to have a calibrated system

Signal in DN or ADU =
$$\left(\frac{QE \times N_{photons}}{g}\right) + b$$

where QE is the quantum efficiency (what fraction of incident photons get made into electrons), g is the photon transfer gain factor (electrons/DN) and b is an electrical offset signal or bias

To calculate SNR, look at all the various noise sources

- Wisest to calculate SNR in electrons rather than ADU or magnitudes
- Noise comes from Poisson noise in the object, Gaussian-like readout noise *RN* per pixel, Poisson noise in the sky background, and dark current noise *D*

• Readout noise:
$$\sigma_{\scriptscriptstyle RN}^2 = n_{\scriptscriptstyle pix} R N^2$$

where n_{pix} is the number of pixels and RN is the readout noise

- Photon noise: $\sigma_{Poisson}^2 = FT = N_{photo-electrons}$
- Sky background: for B_{Sky} e⁻/pix/sec from the sky, $\sigma_{Sky}^2 = B_{Sky}T$
- Dark current noise: for dark current D (e⁻/pix/sec)

$$\sigma_{Dark}^2 = Dn_{pix}T$$

Dark Current or Thermal Noise: Electrons reach conduction bands due to thermal excitation

Science CCDs are always cooled (liquid nitrogen, dewar, etc.)

Credit: Jeff Thrush

Total signal to noise ratio

$$SNR = \frac{FT}{\sigma_{tot}} = \frac{FT}{\left[FT + (B_{sky}n_{pix}T) + (Dn_{pix}T) + (RN^2n_{pix})\right]^{1/2}}$$

where F is the average photo-electron flux, T is the time interval of the measurement, B_{Sky} is the electrons per pixel per sec from the sky background, D is the electrons per pixel per sec due to dark current, and RN is the readout noise per pixel.

Some special cases

 Poisson statistics: If detector has very low read noise, sky background is low, dark current is low, SNR is

$$SNR_{Poisson} = \frac{FT}{\sqrt{FT}} = \sqrt{FT} \propto \sqrt{T}$$

 Read-noise dominated: If there are lots of photons but read noise is high, SNR is

$$SNR_{RN} = \frac{FT}{\left[RN^2 n_{pix}\right]^{1/2}} = \frac{FT}{RN\sqrt{n_{pix}}} \propto T$$

If you add multiple images, SNR ~ (N_{images})^{1/2}

Typical noise cases for astronomical AO

- Wavefront sensors
 - Read-noise dominated:

$$SNR_{RN} = \frac{FT}{RN\sqrt{n_{pix}}}$$

- Imagers (cameras)
 - Sky background limited: $SNR_B = \frac{FT}{\left[B_{sky}n_{pix}T\right]^{1/2}} = \frac{F\sqrt{T}}{\left[B_{sky}n_{pix}\right]^{1/2}}$
- Spectrographs
 - Either sky background or dark current limited:

$$SNR_B = \frac{F\sqrt{T}}{\left[B_{sky}n_{pix}\right]^{1/2}}$$
 or $SNR_D = \frac{F\sqrt{T}}{\left[D n_{pix}\right]^{1/2}}$

Part 3: Class Projects (go to second ppt)

