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Part One: Image motion  
and its effects on Strehl ratio 

•  Sources of image motion: 
–  Telescope shake due to wind buffeting (hard to model  

a priori – depends on telescope, dome, …) 
–  Atmospheric turbulence 

•  Image motion due to turbulence: 
–  Sensitive to atm. inhomogenities > telescope diam. D  
–  Hence reduced if “outer scale” of turbulence is ≤ D 
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•   “Seeing limited”: Units are radians 

•   Seeing disk gets slightly smaller at longer wavelengths:  

  FWHM ~ λ / λ-6/5 ~ λ-1/5 

•    For completely uncompensated images, wavefront error 

      σ2
uncomp = 1.02 ( D / r0 )5/3 

FWHM (λ) = 0.98 λ
r0

Long exposures, no AO correction 
 
 

 



Page 4    	

Correcting tip-tilt has relatively large 
effect, for seeing-limited images 

•  For completely uncompensated images 

      σ2
uncomp = 1.02 ( D / r0 )5/3 

•  If image motion (tip-tilt) has been completely removed 

   σ2
tiltcomp = 0.134 ( D / r0 )5/3          

   (Tyson, Principles of AO, eqns 2.61 and 2.62) 

•  Removing image motion can (in principle) improve the 
wavefront variance of an uncompensated image by a 
factor of 10 

•  Origin of statement that “Tip-tilt is the single largest 
contributor to wavefront error” 
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But you have to be careful if you want to 
apply this statement to AO correction 

•  If tip-tilt has been completely removed 

	 	 	σ2
tiltcomp = 0.134 ( D / r0 )5/3          

•  But typical values of ( D / r0 ) are 10 - 50 in the near-IR 
–  Keck, D=10 m, r0 = 60 cm at λ=2 µm, ( D/r0 ) = 17 

σ2
tiltcomp = 0.134 ( 17 )5/3   ~ 15     

   so wavefront phase variance is >> 1 

•  Conclusion: if  ( D/r0 )  >> 1, removing tilt alone won’t give 
you anywhere near a diffraction limited image 
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Scaling of image motion due to 
turbulence (review) 

•  Mean squared deflection angle due to image motion: 
independent of λ and ~ D-1/3 

•  But relative to Airy disk (diffraction limit), image 
motion gets worse for larger D and smaller wavelengths: 
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Typical values of image motion 

•  Keck Telescope: D = 10 m, r0 = 0.2 m, λ = 2 microns 

•  So in theory at least, rms image motion is > 10 times larger than 
diffraction limit, for these numbers. 
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What maximum tilt must the tip-tilt 
mirror be able to correct? 

•  For a Gaussian distribution, probability is 99.4% that 
the value will be within  ± 2.5 standard deviations of 
the mean.  

•  For this condition, the peak excursion of the angle of 
arrival is  

•  Note that peak angle is independent of wavelength 

α peak = ±1.07 D
r0
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Use Gaussians to model the effects of 
image motion on image quality 

•  Model the diffraction limited core as a Gaussian: 

 

•  A Gaussian profile with standard deviation  
 has same width as an Airy function 

G(x) = 1
(2π )1/2

exp − x2
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Tilt errors spread out the core 

•  Effect of random tilt error σα is to spread each point of 
image into a Gaussian profile with standard deviation σα  

•  If initial profile has width σA  then the profile with tilt has 
width  σT  = ( σα

2 +  σA2 )1/2     (see next slide) 
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Image motion reduces peak intensity 

•  Conserve flux:  

–  Integral under a circular Gaussian profile with peak 
amplitude A0 is equal to 2πA0σA

2    

–  Image motion keeps total energy the same, but puts it 
in a new Gaussian with variance  σT2  =  σA2 +  σα

2  

–  Peak intensity is reduced by the ratio  

FT =
σ A
2

σ A
2 +σα

2 =
1

1+ (σα /σ A )2
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Tilt effects on point spread function, 
continued 

•  Since σA = 0.44 λ / D, peak intensity of the previously 
diffraction-limited core is reduced by 

•  Diameter of core is increased by FT
-1/2  

•  Similar calculations for the halo: replace D by r0 

•  Since D >> r0 for cases of interest, effect on halo is 
modest but effect on core can be large 

FT =
1

1+ D / 0.44λ( )2σα
2
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Typical values for Keck Telescope,  
if tip-tilt is not corrected 

•  Core is strongly affected at a wavelength of 1 micron: 

–  Core diameter is increased by factor of  FT
-1/2  ~  23 

•  Halo is much less affected than core: 

–  Halo peak intensity is only reduced by factor of 0.93 

–  Halo diameter is only increased by factor of 1.04 

σα ≅ 0.5 arcsec, λ / D = 0.02 arcsec, FT =
1

1+ (σα /σ A )2 ≈ 0.002
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Effect of tip-tilt on Strehl ratio 

•  Define Sc as the peak intensity ratio of the core alone: 

•  Image motion relative to Airy disk size 1.22 λ / D : 

•  Example: To obtain Strehl of 0.8 from tip-tilt only (no 
phase error at all, so σϕ = 0),  σα = 0.18 (1.22 λ / D ) 

–  Residual tilt has to be w/in 18% of Airy disk diameter 

Sc =
exp(−σφ
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1+ (D / 0.44λ)2σα
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Effects of turbulence depend 
on size of telescope 

•  Coherence length of turbulence: r0  (Fried’s parameter) 

•  For telescope diameter D  <  (2 - 3) x r0 : 
 Dominant effect is "image wander" 

•  As D becomes >> r0 : 
       Many small "speckles" develop   

 

•  Computer simulations by Nick Kaiser: image of a star, r0 = 40 cm 

D = 1 m" D = 2 m" D = 8 m"
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Effect of atmosphere on long and short 
exposure images of a star 

Hardy p. 94 

 

 

 

 

 

 

 

    
Vertical axis is image size in units of λ /r0 

FWHM = l/D	

Image 
motion only	

Correcting tip-tilt only is 
optimum for D/r0 ~ 1 - 3	
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Summary, Image Motion Effects (1) 

•  Image motion 

–  Broadens core of AO PSF 

–  Contributes to Strehl degradation differently than high-
order aberrations 

–  Effect on Strehl ratio can be quite large: crucial to 
correct tip-tilt 
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Summary, Image Motion Effects (2) 

•  Image motion can be large, if not compensated 
–  Keck, λ = 1 micron,  σα = 0.5 arc sec 

•  Enters computation of overall Strehl ratio differently than higher 
order wavefront errors 

•  Lowers peak intensity of core by Fc
-1 ~ 1 / 0.002 = 500 x 

•  Halo is much less affected: 
–  Peak intensity decreased by 0.93 
–  Halo diameter increased by 1.04 
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How to correct for image motion 

•  Natural guide star AO: 
–  From wavefront sensor information, filter out all higher 

order modes, left with overall tip-tilt 
–  Correct this tip-tilt with a “tip-tilt mirror” 

•  Laser guide star AO: 

–  Can use laser to correct for high-order aberrations but 
not for image motion (laser goes both up and down thru 
atmosphere, hence moves relative to stars) 

–  So LGS AO needs to have a so-called “tip-tilt star” within 
roughly an arc min of target. 

–  Can be faint: down to 18-19th magnitude will work 
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Implications of image motion for AO 
system design 

•  Impact of image motion will be different, depending on 
the science you want to do 

•  Example 1: Search for planets around nearby stars 
–  You can use the star itself for tip-tilt info 
–  Little negative impact of image motion smearing 

•  Example 2: Studies of high-redshift galaxies 
–  Sufficiently bright tip-tilt stars will be rare 
–  Trade-off between fraction of sky where you can get 

adequate tip-tilt correction, and the amount of 
tolerable image-motion blurring 

» High sky coverage è fainter tip-tilt stars farther away 
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Part 2: Detectors and signal to noise ratio 

•  Detector technology  
–  Basic detector concepts 

–  Modern detectors: CCDs and IR arrays 

•  Signal-to-Noise Ratio (SNR) 

–  Introduction to noise sources 

–  Expressions for signal-to-noise 

»  Terminology is not standardized 

»  Two Keys:     1) Write out what you’re measuring.                    
  2) Be careful about units! 

»  Work directly in photo-electrons where possible 
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References for detectors and signal to 
noise ratio 

•  Excerpt from “Electronic imaging in astronomy”, Ian. S. 
McLean (1997 Wiley/Praxis)   

•  Excerpt from “Astronomy Methods”, Hale Bradt 
(Cambridge University Press) 

•  Both are in Reader 
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Early detectors: photographic plates, 
photomultipliers 

•  Photographic plates 
–  very low Quantum 

Efficiency: QE ~ 1 - 4% 
–  non-linear response 
–  very large areas, very small 
“pixels” (grains of silver 
compounds) 

–  hard to digitize 

•  Photomultiplier tubes 
–  low QE (10%) 
–  no noise: each photon 

produces cascade 
–  linear at low signal rates 
–  easily coupled to digital 

outputs 
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Modern detectors are based on 
semiconductors 

•  In semiconductors and insulators, 
electrons are confined to a number 
of specific bands of energy  

•  “Band gap" = energy difference 
between top of valence band and 
bottom of the conduction band  

•  For an electron to jump from a 
valence band to a conduction band, 
need a minimum amount of energy  

•  This energy can be provided by a 
photon, or by thermal energy, or by 
a cosmic ray 

•  Vacancies or holes left in valence 
band allow it to contribute to 
electrical conductivity as well  

•  Once in conduction band, electron 
can move freely 
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Bandgap energies for commonly used 
detectors 

Credit: Ian McLean 

•  If the forbidden energy gap is EG there is a cut-off wavelength 
beyond which the photon energy (hc/λ) is too small to cause an 
electron to jump from the valence band to the conduction band 
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CCD transfers charge from one pixel to 
the next in order to make a 2D image 

•  By applying “clock voltage” to pixels in sequence, can 
move charge to an amplifier and then off the chip 

conveyor belts 

rain 

bucket 
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Schematic of CCD and its read-out 
electronics 

•  “Read-out noise” injected at the on-chip electron-to-
voltage conversion (an on-chip amplifier) 
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CCD readout process: charge transfer 

•  Adjusting voltages on electrodes 
connects wells and allow charge to 
move 

•  Charge shuffles up columns of the CCD 
and then is read out along the top 

•  Charge on output amplifier (capacitor) 
produces voltage 

 

Video animation:  
https://www.youtube.com/watch?v=PoXinWleWns 
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Modern detectors: photons ➞ electrons 
➞  voltage ➞  digital numbers 

•  With what efficiency do photons produce electrons? 

•  With what efficiency are electrons (voltages) measured? 

•  Digitization: how are electrons (analog) converted into 
digital numbers? 

•  Overall: What is the conversion between photons 
hitting the detector and digital numbers read into your 
computer? 
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Primary properties of detectors 

•  Quantum Efficiency QE: Probability of detecting a 
single photon incident on the detector 

•  Spectral range (QE as a function of wavelength) 

•  “Dark Current”: Detector signal in the absence of light 

•  “Read noise”: Random variations in output signal when 
you read out a detector 

•  Gain g : Conversion factor between internal voltages 
and computer “Data Numbers” DNs or “Analog-to-Digital 
Units” ADUs  
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Secondary detector characteristics 

•  Pixel size (e.g. in microns) 

•  Total detector size (e.g. 1024 x 1024 pixels) 

•  Readout rate (in either frames per sec or pixels per sec) 

•  Well depth (the maximum number of photons or 
photoelectrons that a pixel can record without 
“saturating” or going nonlinear) 

•  Cosmetic quality: Uniformity of response across pixels, 
dead pixels 

•  Stability: does the pixel response vary with time? 
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CCDs are the most common detector for 
wavefront sensors 

•  Can be read out fast (e.g., every few milliseconds so as 
to keep up with atmospheric turbulence) 

•  Relatively low read-noise (a few to 10 electrons) 

•  Only need modest size (e.g., largest today is only 
256x256 pixels) 
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CCD phase space 

•  CCDs dominate inside and outside astronomy 
–  Even used for x-rays 

•  Large formats available (4096x4096) or mosaics of 
smaller devices. Gigapixel focal planes are possible. 

•  High quantum efficiency 80%+ 

•  Dark current from thermal processes  
–  Long-exposure astronomy CCDs are cooled to reduce 

dark current 

•  Readout noise can be several electrons per pixel each 
time a CCD is read out 

» Trade high readout speed vs added noise 
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What do CCDs look like? 

   Carnegie 4096x4096 CCD   Subaru SuprimeCam Mosaic 
          Slow readout (science)        Slow readout (science) 

E2V 80 x 80  
fast readout for 
wavefront sensing 
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Infrared detectors 

•  Read out pixels 
individually, by bonding a 
multiplexed readout array 
to the back of the photo-
sensitive material 

•  Photosensitive material 
must have lower band-gap 
than silicon, in order to 
respond to lower-energy IR 
photons 

•  Materials: InSb, HgCdTe, ... 
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Types of noise in instruments 

•  Every instrument has its own characteristic background 
noise 
–  Example: cosmic ray particles passing thru a CCD 

knock electrons into the conduction band 

•  Some residual instrument noise is statistical in nature; 
can be measured very well given enough integration 
time 

•  Some residual instrument noise is systematic in nature: 
cannot easily be eliminated by better measurement 
–  Example: difference in optical path to wavefront 

sensor and to science camera 
–  Typically has to be removed via calibration 
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Statistical fluctuations = “noise” 

•  Definition of variance: 

where m is the mean, n is the number of independent 
measurements of x, and the xi are the individual 
measured values 

•  If x and y are two random independent variables, the 
variance of the sum (or difference) is the sum of the 
variances: 

σ 2 ≡
1
n

xi − m( )2
i=1

n

∑

σ tot
2 = σ x

2 +σ y
2
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Main sources of detector noise for 
wavefront sensors in common use 

•  Poisson noise or photon statistics 
–  Noise due to statistics of the detected photons 

themselves 

•  Read-noise 
–  Electronic noise (from amplifiers) each time CCD is 

read out 

•  Other noise sources (less important for wavefront 
sensors, but important for other imaging applications) 
–  Sky background 
–  Dark current 
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Photon statistics: Poisson distribution 

•  CCDs are sensitive enough that they care about individual photons 

•  Light is quantum in nature.  There is a natural variability in how many 
photons will arrive in a specific time interval T , even when the average flux 
F (photons/sec) is fixed. 

•  We can’t assume that in a given pixel, for two consecutive observations of 
length T, the same number of photons will be counted. 

•  The probability distribution for N photons to be counted in an observation 
time T is 

P(N F ,T ) =
FT( )N e−FT

N !
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Properties of Poisson distribution 

•  Average value = FT 

•  Standard deviation = 
(FT)1/2 

•  Approaches a Gaussian 
distribution as N 
becomes large 

Horizontal axis: FT 
Credit: Bruce Macintosh	
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Properties of Poisson distribution 

Horizontal axis: FT 
Credit: Bruce Macintosh	
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Properties of Poisson distribution 

•  When < FT > is large, 
Poisson distribution 
approaches Gaussian 

•  Standard deviations 
of independent 
Poisson and Gaussian 
processes can be 
added in quadrature 

Horizontal axis: FT 
Credit: Bruce Macintosh	
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How to convert between incident 
photons and recorded digital numbers ? 

•  Digital numbers outputted from a CCD are called Data Numbers 
(DN) or Analog-Digital Units (ADUs) 

•  Have to turn DN or ADUs back into microvolts ➞ electrons ➞  
photons to have a calibrated system 

 

where QE is the quantum efficiency (what fraction of incident 
photons get made into electrons), g is the photon transfer gain 
factor (electrons/DN) and b is an electrical offset signal or bias 

Signal in DN or ADU =
QE × Nphotons

g
⎛
⎝⎜

⎞
⎠⎟
+ b
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To calculate SNR, look at all the various 
noise sources 

•  Wisest to calculate SNR in electrons rather than ADU or magnitudes 

•  Noise comes from Poisson noise in the object, Gaussian-like readout 
noise RN per pixel, Poisson noise in the sky background, and dark 
current noise D 

•  Readout noise: 

where npix is the number of pixels and RN is the readout noise  

•  Photon noise: 

•  Sky background: for BSky e-/pix/sec from the sky,  

•  Dark current noise: for dark current D (e-/pix/sec)   

σ RN
2   =  npixRN

2

σ Poisson
2 = FT = Nphoto−electrons

σ Dark
2 = DnpixT

σ Sky
2 = BSkyT
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Dark Current or Thermal Noise: Electrons reach 
conduction bands due to thermal excitation 

Credit: Jeff Thrush 

Science CCDs are 
always cooled (liquid 
nitrogen, dewar, etc.) 
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Total signal to noise ratio 

SNR =
FT
σ tot

=
FT

FT + (BskynpixT ) + (DnpixT ) + (RN
2npix )⎡⎣ ⎤⎦

1/2

where F  is the average photo-electron flux, T  is the time 
interval of the measurement, BSky  is the electrons per 
pixel per sec from the sky background, D  is the electrons 
per pixel per sec due to dark current, and RN  is the 
readout noise per pixel. 
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Some special cases 

•  Poisson statistics: If detector has very low read noise, 
sky background is low, dark current is low, SNR is 

•  Read-noise dominated:  If there are lots of photons but 
read noise is high, SNR is 

 
      If you add multiple images, SNR ~ ( Nimages )1/2 

SNRPoisson =
FT
FT

= FT ∝ T

SNRRN =
FT

RN 2npix⎡⎣ ⎤⎦
1/2 =

FT
RN npix

∝T
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Typical noise cases for astronomical AO 

•  Wavefront sensors 
–  Read-noise dominated: 

•  Imagers (cameras)  
–  Sky background limited: 

•  Spectrographs 
–  Either sky background or dark current limited:   

SNRRN =
FT

RN npix

SNRB =
FT

BskynpixT⎡⎣ ⎤⎦
1/2 =

F T

Bskynpix⎡⎣ ⎤⎦
1/2

SNRB =
F T

Bskynpix⎡⎣ ⎤⎦
1/2   or  SNRD =

F T

D npix⎡⎣ ⎤⎦
1/2  
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Part 3: Class Projects (go to second ppt) 


